Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode

Identifieur interne : 000D35 ( Main/Repository ); précédent : 000D34; suivant : 000D36

Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode

Auteurs : RBID : Pascal:13-0108159

Descripteurs français

English descriptors

Abstract

Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0108159

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Epitaxial growth of visible to infra-red transparent conducting In
<sub>2</sub>
O
<sub>3</sub>
nanodot dispersions and reversible charge storage as a Li-ion battery anode</title>
<author>
<name sortKey="Osiak, M" uniqKey="Osiak M">M. Osiak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, University College Cork</s1>
<s2>Cork</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khunsin, W" uniqKey="Khunsin W">W. Khunsin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Catalan Institute of Nanotechnology, Campus UAB, Edifici CM3, Bellaterra</s1>
<s2>08193 (Barcelona)</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Armstrong, E" uniqKey="Armstrong E">E. Armstrong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, University College Cork</s1>
<s2>Cork</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kennedy, T" uniqKey="Kennedy T">T. Kennedy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical and Environmental Sciences, University of Limerick</s1>
<s2>Limerick</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Limerick</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Materials and Surface Science Institute, University of Limerick</s1>
<s2>Limerick</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Limerick</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sotomayor Torres, C M" uniqKey="Sotomayor Torres C">C. M. Sotomayor Torres</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Catalan Institute of Nanotechnology, Campus UAB, Edifici CM3, Bellaterra</s1>
<s2>08193 (Barcelona)</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="05">
<s1>Catalan Institute for Research and Advances Studies (ICREA)</s1>
<s2>08010 Barcelona</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="06">
<s1>Department of Physics, Universidad Autonoma de Barcelona, Campus UAB</s1>
<s2>08193 Bellaterra</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ryan, K M" uniqKey="Ryan K">K. M. Ryan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical and Environmental Sciences, University of Limerick</s1>
<s2>Limerick</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Limerick</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Materials and Surface Science Institute, University of Limerick</s1>
<s2>Limerick</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Limerick</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Dwyer, C" uniqKey="O Dwyer C">C. O Dwyer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, University College Cork</s1>
<s2>Cork</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Materials and Surface Science Institute, University of Limerick</s1>
<s2>Limerick</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Limerick</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Micro & Nanoelectronics Centre, Tyndall National Institute</s1>
<s2>Lee Maltings, Cork</s2>
<s3>IRL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Lee Maltings, Cork</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0108159</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0108159 INIST</idno>
<idno type="RBID">Pascal:13-0108159</idno>
<idno type="wicri:Area/Main/Corpus">001179</idno>
<idno type="wicri:Area/Main/Repository">000D35</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active material</term>
<term>Backscattering</term>
<term>Charge storage</term>
<term>Composite materials</term>
<term>Coverage rate</term>
<term>Dispersions</term>
<term>Electrode material</term>
<term>Electrolytes</term>
<term>Growth mechanism</term>
<term>Indium oxide</term>
<term>Lithiation</term>
<term>Lithium alloys</term>
<term>Lithium battery</term>
<term>Metal deposition</term>
<term>Mismatch lattice</term>
<term>Molecular beam epitaxy</term>
<term>Monocrystals</term>
<term>Nanodot</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Optical properties</term>
<term>Oxidation</term>
<term>Porous materials</term>
<term>Refractive index</term>
<term>Silicon</term>
<term>Thin films</term>
<term>Transparency</term>
<term>Volume expansion</term>
<term>Wide band</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Epitaxie jet moléculaire</term>
<term>Nanopoint</term>
<term>Nanomatériau</term>
<term>Dispersion</term>
<term>Stockage charge</term>
<term>Batterie lithium</term>
<term>Transparence</term>
<term>Large bande</term>
<term>Dépôt métal</term>
<term>Oxydation</term>
<term>Rétrodiffusion</term>
<term>Mécanisme croissance</term>
<term>Degré recouvrement</term>
<term>Indice réfraction</term>
<term>Oxyde d'indium</term>
<term>Monocristal</term>
<term>Matériau poreux</term>
<term>Silicium</term>
<term>Lithium alliage</term>
<term>Propriété optique</term>
<term>Expansion volume</term>
<term>Couche mince</term>
<term>Matière active</term>
<term>Matériau composite</term>
<term>Electrolyte</term>
<term>Accommodation réseau</term>
<term>Lithiation</term>
<term>Matériau électrode</term>
<term>Synthèse nanomatériau</term>
<term>In2O3</term>
<term>Substrat silicium</term>
<term>Si</term>
<term>Li</term>
<term>8116B</term>
<term>8107B</term>
<term>8247A</term>
<term>7867</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau composite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Unique bimodal distributions of single crystal epitaxially grown In
<sub>2</sub>
O
<sub>3</sub>
nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In
<sub>2</sub>
O
<sub>3</sub>
refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In
<sub>2</sub>
O
<sub>3</sub>
and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Epitaxial growth of visible to infra-red transparent conducting In
<sub>2</sub>
O
<sub>3</sub>
nanodot dispersions and reversible charge storage as a Li-ion battery anode</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OSIAK (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KHUNSIN (W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ARMSTRONG (E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KENNEDY (T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SOTOMAYOR TORRES (C. M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RYAN (K. M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>O'DWYER (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, University College Cork</s1>
<s2>Cork</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Catalan Institute of Nanotechnology, Campus UAB, Edifici CM3, Bellaterra</s1>
<s2>08193 (Barcelona)</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemical and Environmental Sciences, University of Limerick</s1>
<s2>Limerick</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Materials and Surface Science Institute, University of Limerick</s1>
<s2>Limerick</s2>
<s3>IRL</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Catalan Institute for Research and Advances Studies (ICREA)</s1>
<s2>08010 Barcelona</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Physics, Universidad Autonoma de Barcelona, Campus UAB</s1>
<s2>08193 Bellaterra</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Micro & Nanoelectronics Centre, Tyndall National Institute</s1>
<s2>Lee Maltings, Cork</s2>
<s3>IRL</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>065401.1-065401.10</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000182542850070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0108159</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Unique bimodal distributions of single crystal epitaxially grown In
<sub>2</sub>
O
<sub>3</sub>
nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In
<sub>2</sub>
O
<sub>3</sub>
refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In
<sub>2</sub>
O
<sub>3</sub>
and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanopoint</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanodot</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanopunto</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dispersion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Dispersions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Stockage charge</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Charge storage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Almacienamiento carga</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Batterie lithium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Lithium battery</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Transparence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Transparency</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Large bande</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Wide band</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Banda ancha</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dépôt métal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Metal deposition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Deposición metal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Oxydation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Oxidation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Rétrodiffusion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Backscattering</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Degré recouvrement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Coverage rate</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Grado recubrimiento</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Matériau poreux</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Porous materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Lithium alliage</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Lithium alloys</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Expansion volume</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Volume expansion</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Expansión volumen</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Matière active</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Active material</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Materia activa</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Matériau composite</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Composite materials</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Electrolyte</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Electrolytes</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Lithiation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Lithiation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Litiación</s0>
<s5>36</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Matériau électrode</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Electrode material</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Material electrodo</s0>
<s5>37</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>38</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Li</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>8116B</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>8247A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>084</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D35 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D35 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0108159
   |texte=   Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024